DSC_2012 Notification _http://apdsc.cgg.gov.in/_http://www.dseap.gov.in/

| comments








DSC_2012 Notification 

Total Vacancies :  21343

Secondary Grade Teachers : 11,602

School Assistants  : 5703

Language Pandits : 2000

PET   : 365 

Muncipal School Teacher's : 1673
 Online Appication are Available at

http://apdsc.cgg.gov.in/_

http://www.dseap.gov.in/

APTET Results_Andhra Pradesh Teachers Eligibility Test

| comments










AP TET Andhra Pradesh Teachers Eligibility Test _APTET Results_ CLICK HERE

Cognizant Technology Solutions careers 2012

| comments

Cognizant Technologies Solutions careers 2012: Cognizant business culture reflects the fact that it was “born global” as a unit of U.S.-based Dun & Bradstreet with operations based in India. Although headquartered in the U.S., it is continue to enjoy high standing as “local” player and an employer of choice with a strong reputation for excellence in India. In 2010Selected for Fortune’s “Most Admired Companies” list for the second year in a row; placed in Top 5 for IT services, in 2006 it Became the fastest global IT services company to reach a $1 billion run-rate(under 12 years).
Performance Testing/Performance engineering (3-8 years) openings at Coimbatore: 
Cognizant requires experienced candidates for Performance Testing and/or Performance Engineer to work at Coimbatore. The Educated candidates with good knowledge are eligible.
Job Summary:
Company name: Cognizant Technologies Solutions
Experience: 3-8 years
Education: Not Mentioned
Location: Coimbatore
Job Role: Performance Testing and/or Performance Engineer
Job Description:
Candidate should have excellent knowledge in Java/J2ee, IBM HTTP, JBoss, Oracle, SQL, DB2 and candidate should have proficiency in Profile, Monitoring, Analysis and Performance testing like Load Runner, Silk performer, Open STA and Jmeter.
Contact details: 
Company Name: Cognizant Technologies Solutions
Website: www.cognizant.com

———————————————————————————————————————————————-
Cognizant Technologies Solutions careers 2012: Cognizant business culture reflects the fact that it was “born global” as a unit of U.S.-based Dun & Bradstreet with operations based in India. Although headquartered in the U.S., it is continue to enjoy high standing as “local” player and an employer of choice with a strong reputation for excellence in India. In 2010Selected for Fortune’s “Most Admired Companies” list for the second year in a row; placed in Top 5 for IT services, in 2006 it Became the fastest global IT services company to reach a $1 billion run-rate(under 12 years).
Java script Developer (3-6 years) openings at Chennai: 
Cognizant requires the most experienced candidates for Java script Developer to work at Chennai. The Educates candidates with strong knowledge are eligible to apply.
Job Summary:
Company name: Cognizant Technologies Solutions
Experience: 3-6 years
Education: Not Mentioned
Location: Chennai
Job Role: Java script Developer
Job Description:
Candidate should have excellent knowledge and experience in Java/J2ee, HTML, CSS, Java script and Jquery. Candidate should have good analysis and problem solving skills. Candidates must have excellent communication and interpersonal skills.
Contact details: 
Company Name: Cognizant Technologies Solutions
Website: www.cognizant.com

IT Freshers Walk-Ins in Bangalore 2012

| comments (1)

IT Freshers Walk-Ins in Bangalore 2012: B.E/ B.Tech/ BCA, M.E/ MCA/ M.Tech and other qualified Fresher candidates may check your qualification with below mentioned IT Freshers Walk-Ins details. providing the information of IT Freshers Walk-ins at Bangalore.
#1) Walk-Ins Drive Freshers openings in Robosoft Technologies at Bangalore:
Robosoft provides the software product development services to its clients globally. Robosoft is a member of the National Association of Software and Services Company (NASSCOM). It is looking for the Freshers candidates to work at Bangalore for the Software jobs in its company.
Company Name: Robosoft Technologies
Experience: Freshers
Education: UG- B.E/ B.Tech- Computer Science/ Information Science/ Technology
PG- MCA/ M.Tech- Computer Science/ Information Science/ Technology
Location: Bangalore
Job Role: Freshers
Job Description: 
Candidates should have minimum knowledge of Software Development and programming. Candidates must write a programming test on C or C++, they will be selected for technical and HR interview. Candidates may carry their CV and a Photograph.
Walk-in Details: 
Company Name: Robosoft Technologies
Walk-In Date: 21st January 2012
Location: Bangalore
Walk -in Venue: SEA College of Engineering & Technolog
Ekta Nagar, Basavanapura,
KR Puram, Virgonagar,
Bagalore.
Telephone: 96633 73930/0820 2593905/ 0820 2593930
Eamil: walkin@robosoftin.com
Website: www.robosoftin.com
#2) Walk-Ins Software Developer (Freshers) openings in Tally Solutions at Bangalore:
Tally has been differentiated itself empathically. It is a pioneered company which was committed firmly in Indian business. Its strong principle is to reach customers through a dedicated partner network. Tally is looking for the fresher candidates to work at Bangalore for the position of Software Developer.
Company Name: Tally Solutions
Experience: Freshers
Education: UG- B.E- CS/IT/IS/EC/EEE/ Instr/Electrical
PG- M.E/ MCA
Location: Bangalore
Job Role: Software Developer
Job Description: 
Candidates should have minimum knowledge of Software Development, C, C++, Linux and UNIX. Candidates must be willingly and logically towards the work. Candidates should have good interpersonal and communication skills.
Event Dates: 
- 28th Dec (Delhi)
- 19th Jan (Bangalore) 
- 22nd Jan (Kolkata)
Walk-in Details: 
Company Name: Tally Solutions
Walk-In Date: 19th January 2012
Last Date: 15th January 2012
Location: Bangalore
Website: www.tallysolutions.com
#3) Walk-Ins (Freshers) openings in CISCO Systems at Bangalore:
Cisco Systems is an American software MNC company. It is providing various software services and solutions. CISCO is looking for the fresher candidates to work at Bangalore for the position of Software Developer.
Job description: 
Company Name: CISCO Systems
Experience: Freshers
Education: UG- B.E/ B.Tech- (Comp Sc. / IT / IS / E&C)
Location: Bangalore
Job Role: Fresher
Job Description: 
Candidates should have minimum knowledge of C, C++ and computer science. Candidates should be familiar with computer system architecture and OS fundamentals. Candidate should be good at communication skills.
Walk-in Details: 
Company Name: CISCO Systems Pvt Ltd
Walk-In Date: 14th January 2012
Location: Bangalore



EAMCET 2012 Syllabus

| comments (1)

 ALGEBRA:

(a) Functions – Types of functions – Algebra of real valued functions

(b) Mathematical induction and applications

(c) Permutations and Combinations – linear and circular permutations – combinations.

(d) Binomial theorem – for a positive integral index – for any rational index – applications – Binomial Coefficients.

(e) Partial fractions

(f) Exponential and logarithmic series

(g) Quadratic expressions, equations and inequations in one variable.

(h) Theory of equations – Relations between the roots and Coefficients in any equation – Transformation of equations – reciprocal equations.

(i) Matrices and determinants – Types of matrices – Algebra of matrices – Properties of determinants – simultaneous linear equations in two and three variables –

Consistency and inconsistency of simultaneous equations. (j) Complex numbers and their properties – De Moivre’s theorem – Applications – Expansions of trigonometric functions.


II. TRIGONOMETRY:

(a) Trigonometric functions – Graphs – periodicity

(b) Trigonometric ratios of compound angles, multiple and sub-multiple angles.

(c) Transformations

(d) Trigonometric equations

(e) Inverse trigonometric functions

(f) Hyperbolic and inverse hyperbolic functions

(g) Properties of Triangles

(h) Heights and distances (in two-dimensional plane)

III. VECTOR ALGEBRA:

(a) Algebra of vectors – angle between two non-zero vectors – linear combination of vectors – vector equation of line and plane

(b) Scalar and vector product of two vectors and their applications (c) Scalar and vector triple products, Scalar and vector products of four vectors

IV. PROBABILITY:

(a) Random experiments – Sample space – events – probability of an event – addition and multiplication theorems of probability – Baye’s theorem

(b) Random variables – Mean and variance of a random variable – Binomial and Poisson distributions

V. Coordinate Geometry:

(a) Locus, Translation of axes, rotation of axes

(b) Straight line

(c) Pair of straight lines

(d) Circles

(e) System of circles

(f) Conics – Parabola – Ellipse – Hyperbola – Equations of tangent, normal, chord of contact and polar at any point of these conics

(g) Polar Coordinates

(h) Coordinates in three dimensions, distance between two points in the space, section formula and their applications

(i) Direction Cosines and direction ratios of a line – angle between two lines

(j) Cartesian equation of a plane in (i) general form (ii) normal form and (iii) intercept form – angle between two
Planes

(k) Sphere – Cartesian equation – Centre and radius

VI Calculus:

(a) Functions – limits – Continuity

(b) Differentiation – Methods of differentiation

(c) Successive differentiation – Leibnitz’s theorem and its applications

(d) Applications of differentiation

(e) Partial differentiation including Euler’s theorem on homogeneous functions

(f) Integration – methods of integration

(g) Definite integrals and their applications to areas – reduction formulae

(h) Numerical integration – Trapezoidal and Simpson’s rules

(i) Differential equations – order and degree – Formation of differential equations – Solution of differential equation by variables seperable method – Solving homogeneous and linear differential equations of first order and first degree.

I - MEASUREMENTS, UNITS AND DIMENSIONS : Introduction- units and Dimensions, Accuracy, precision of measuring instruments, Constant errors, systematic errors, environmental errors (errors due to external causes). Error due to imperfection, Random errors, Gross Errors, Absolute Errors, Relative percentage errors, Errors due to addition, subtraction, multiplication, division, powers of observed quantities, Significant figures, Fundamental and derived physical quantities / System of Units, definition of units in SI. Multiple and submultiples of SI units, Dimensional formulae and dimensional equations, dimensional constants and dimensionless quantities. Principle of homogeneity of dimensions, Conversion of one system of units into another, to check correctness of an equation, to derive the relationship between different physical quantities.


II - ELEMENTS OF VECTORS : Physical quantities, geometrical representation of vectors, addition of vectors, equality of vectors, Resolution of a vector into components, null vector, unit vector in Cartesian co-ordinate system, position vector and its magnitude, Parallelogram law of addition of vectors, Derivation of expression for the magnitude and the direction of resultant vector, Special cases, Triangle law and polygon law of vectors, triangle law of addition of vectors, polygon law of addition of vectors, concept of relative velocity, application to relative motion of a boat in a river, motion of a boat across a river, shortest path, shortest time, Multiplication of vector with a scalar, product of two vectors, scalar product or dot product of two vectors, properties of scalar product, examples of scalar product, work done and energy, vector product of two vectors, properties of vector product of two vectors, torque,
Angular momentum.

III - Kinematics : Introduction- Equations of motion, position-time and velocity-time graphs, equations for uniformly accelerated motion (graphical treatment), acceleration due to gravity, equations of motion of a freely falling body, Equations of motion of an object vertically projected upwards from the ground, Maximum height (H), Time of ascent, time of descent, velocity of the body on returning to the point of projection, Vertical projection of an object from a tower, Projectiles – oblique projection from ground, equation of trajectory, maximum height, time of ascent, time of flight, horizontal range, two angles of projection for the same range, velocity of projection at any instant, horizontal projection from the top of a tower, equation of trajectory, time of descent, range, velocity of the projectile (at any instant).

IV - DYNAMICS : Introduction- Newton’s laws of motion, applications of Newton’s laws. Objects suspended by strings, Atwood machine, blocks placed in contact with each other on frictionless horizontal surface, apparent weight in a lift, Impulse, law of conservation of linear momentum, conservation of linear momentum during collision, work, power, energy, KE&PE definition and derivation for both, Relation between KE and Linear momentum, conservative and non-conservative forces, work-energy theorem, Law of conservation of energy in case of freely failing body and vertically projected body.

V - COLLISIONS: Introduction – Elastic and inelastic collisions, Collisions in one dimension (Elastic collision only), body at rest, bodies moving in same direction and opposite directions, Co-efficient of restitution, definition, equation for height attained for freely falling body after number of rebounds on floor.

VI - CENTRE OF MASS (CM): Introduction- Centre of mass, difference between centre of mass and centre of gravity, co-ordinates of centre of mass, centre of mass of particles along a line, centre of mass of system of particles in a plane, center of mass of system of particles in space, motion of centre of mass (Velocity and acceleration of CM), characteristics of centre of mass, laws of motion of the centre of mass, velocity and acceleration, explosion.

VII – FRICTION: Introduction - cause of friction, advantages of friction, disadvantages of friction, methods of reducing friction, types of friction, static friction, kinetic (or) dynamic friction, rolling friction, Distinction between static and dynamic friction. Normal reaction, laws of friction, static friction, kinetic friction or Dynamic friction, Rolling friction, Angle of friction, motion of body on rough horizontal plane, motion of bodies on an inclined plane, Body at rest on the plane-Angle of repose-when the body is just ready to slide, when the body is sliding down. Motion of a body on smooth and rough inclined plane, body sliding down the plane, body sliding up the plane, pushing and pulling of a lawn roller. A lawn roller on a horizontal surface pulled by an inclined force, a roller on horizontal surface pushed by an inclined force.

VIII - ROTATORY MOTION: Couple (concepts, units, dimensional formula and examples), Vector representation of torque, Moment of Inertia(MI), definition, units, parallel and perpendicular axes theorems. Expressions for MI of a thin rod, uniform disc, rectangular lamina, solid and hollow spheres, circular ring and cylinder (no derivations needed), angular momentum, relation between angular momentum and torque, law of conservation of angular momentum with examples, Motion in vertical circle.

IX- GRAVITATION: Introduction- Basic forces in nature, Nature of gravity, law of universal gravitation, Relation between Universal gravitational constant (G) and acceleration due to gravity (g), variation of ‘g’ with altitude, depth, latitude and shape of the earth, characteristics of gravitational force, limitations of Newton’s third law, gravitational field, field strength, properties of gravitational fields, Origin of black holes, Chandrashekar limit, neutron star, Frames of reference, Inertial and Non- Inertial frames, Inertial and Gravitational mass & relation between them, Principle of equivalence, Escape and Orbital velocities, definition, derivation of expressions and relation between them, Geostationary satellites and their uses.

X- SIMPLE HARMIMIC MOTION (SHM): Introduction- simple harmonic motion examples, SHM explanation by reference circle, expression for displacement, amplitude, velocity, acceleration, time period, frequency, phase, initial phase (epoch) - Simple pendulum, expression for time period, loaded spring, expression for time period, force constant, PE and KE of simple harmonic oscillator, Total Energy of Simple Harmonic Oscillator, Law of conservation of energy in the case of a simple pendulum.

XI- ELASTICITY: Introduction- Elasticity and plasticity, stress, strain, Hook’s law, Moduli of elasticity, Poisson’s ratio, definition and its limit, Behavior of a wire under gradually increasing load- Elastic fatigue, strain energy - experimental determination of Young’s modulus of wire.

XII- SURFACE TENSION: Introduction - surface tension, definition - Examples, molecular theory of surface tension. Surface energy, Angle of contact, capillarity-examples in daily life, Determination of surface tension by capillary rise method – theory and experiment. Effect of temperature on surface tension, excess pressure in liquid drops and soap bubbles.

XIII- FLUID MACHANICS: Introduction - Principle of Buoyancy- pressure in a fluid - Streamline flow – Bernoulli’s theorem - equation with derivation – applications-aerodynamic lift, motion of a spinning ball, Illustrations of Bernoulli’s theorem. Viscosity – explanation, coefficient of viscosity, effect of temperature on viscosity, Poiseuille’s equation, Motion of objects through fluids. Stokes formula, net force on the object, terminal velocity.

XIV- TEMPERATURE AND THERMAL EXPANSION OF MATERIALS: Introduction-concept of temperature, Measurement of temperature, Fahrenheit, Centigrade scales of temperature, their relation (only formulae)- Different types of thermometers (brief theoretical description). Vibration of atoms in a solid, PE curve, Anharmonicity of vibrations, explanation for expansion in solids. Coefficients of linear, areal and cubical expansion, definitions, Expressions & Relation between these coefficients of expansions, change of density with temperature, examples in daily life. Introduction- coefficients of real and apparent expansion of liquids, relation between them with derivation, Determination of coefficient of apparent expansion of liquids by specific gravity bottle method, Anomalous expansion of water, its significance in nature. Introduction - volume and pressure coefficients of gases, relation between them and derivation. Determination of volume coefficient-Regnault’s method. Determination of pressure coefficient-Jolly’s bulb method. Kelvin scale of temperature, Boyle’s and Charle’s laws. Ideal gas equation, derivation, significance of Universal gas constant.

XV - THERMO-DYNAMICS: Introduction - Quasistatic and cyclic process, reversible and irreversible processes, Heat and Temperature, Zeroeth law of Thermodynamics, definition of Calorie, Joule’s law and mechanical equivalent of heat, Internal energy, First law of thermodynamics, equation and explanation. Heat capacity, specific heat, experimental determination of specific heat by the method of mixtures. Specific heats of a gas (Cp and Cv), External work done by a gas during its expansion. Relation between Cp and Cv derivation, Isothermal and adiabatic processes. Relation between P, V and T in these processes. Expression for work done in Isothermal process (no derivation), expression of work done in adiabatic process (no derivation). Heat engines and refrigerators (only qualitative treatment). Three phases of mater, Triple point – Triple point of water. Latent heat, Determination of latent heat of vaporization of water, Second law of thermodynamics – different statements.

XVI- TRANSMISSION OF HEAT: Introduction - conduction of heat, coefficient of thermal conductivity, convection- Type of convections, Nature and properties of Thermal radiation, Prevost’s theory of heat exchange - emission power and absorptive power - Black body radiation, Kirchoff’s law and its applications – Stefan’s law – Newton’s law of cooling.

XVII- WAVE MOTION: Longitudinal and transverse waves, Equation for a progressive wave, principle of superposition of waves, reflection of waves, Formation of waves on a stretched string, laws of vibrating strings, experimental verification by Sonometer, Sound: Characteristics of sound, speed of sound in solids, liquids and gases (only formula to be given), Forced Vibrations, Free Vibrations, Resonance with examples, standing waves in Organ Pipes, Open Pipes, Closed Pipes, Fundamental frequency-Overtones, Harmonics, definition and explanation, Beats definition and its importance. Doppler Effect, Definition, derivation of relation for apparent frequency of a sound note emitted by a source for the cases a) only source is moving, b) only listener is moving, c) both source and listener are moving. Applications and limitations of Doppler Effect- Echoes, Absorption of sound waves, Reverberation – Reverberation Time, Fundamentals of building Acoustics – Statement of Sabine’s Law.


XVIII- OPTICS: Nature of Light, Newton’s corpuscular Theory, Huygen’s Wave Theory- Electromagnetic spectrum. Huygen’s Explanation of Reflection and Refraction of plane waves at a plane surface. Refraction through prism, Derivation of Refractive index of material of prism for minimum deviation, critical angle, Total Internal Reflection, Relation between Critical angle and Refractive Index, application of total internal reflection to Optical fibers. Defects in Images: Spherical and Chromatic aberrations and reducing these defects, Different methods (qualitative treatment). Optical Instruments: Microscope, Telescope, Formula for magnification of Microscope, Astronomical and Terrestrial Telescopes. Construction of Ramsden’s and Huygen’s eye pieces with ray diagrams. Dispersion of light, dispersive power, pure and impure spectra, condition for obtaining pure spectrum, different kinds of spectra– Emission spectra, Line, Band and continuous spectra, absorption spectra, Fraunhofer lines and their significance.


XIX- PHYSICAL OPTICS: Interference – condition for interference, Young’s double slit experiment – Derivation for Intensity and fringe width – Uses of interference, Diffraction: Fresnel and Fraunhofer diffraction (Qualitative only). Polarisation: Concepts of Polarisation. Plane Polarisation of Light by Reflection, Refraction and Double Refraction (Polaroids).

XX- MAGNETISM: Coulomb’s Inverse Square Law, Definition of Magnetic Field, Magnetic Lines of Force- Uniform and Non – Uniform Magnetic Fields. Couple acting on a bar magnet placed in a uniform magnetic field, Definition of magnetic moment of magnet. Magnetic Induction due to a bar magnet on axial and equatorial lines. Superposition of magnetic fields, Tangent Law, Deflection Magnetometer. Comparison of Magnetic Moments in Tan A, Tan B positions by equal distance method and Null Method, Verification of Inverse Square Law. Vibration Magnetometer- Principle and Description, Experimental determination of M and BH(earth’s horizontal component) using Vibration Magnetometer. Types of magnetic materials – Para, Dia, and Ferro Magnetism – Definition and properties.

XXI- ELECTROSTATICS: Charges – conservation of charge and additive property of charges. Coulomb’s Law : Permittivity of Free Space and Permittivity of Medium, Force between two point charges. Force due to multiple charges – Principle of superposition with examples. Electric field, Electric lines of force, their properties, Electric field intensity definition, electric intensity due to isolated charge and due to multiple charges. Electrostatic Potential,
Definition of Electrostatic Potential in an electric field- Potential due to single charge and multiple charges, Electrostatic potential energy- Relation between electrostatic potential and electric intensity. Electric Flux & Gauss Law: Electric Flux Definition, Gauss Law-Statement of Gauss Law, Application of Gauss Law to find electric intensity and electrostatic
Potential due to continuous charge distribution of Infinite Long wire, Infinite Plane Sheet and Spherical Shell. Capacitance, Definition of Electrical Capacity of a Conductor, Capacitance, Dielectric constant, Definition of Condenser, its uses, Parallel plate Condenser, Formula for Capacitance of Parallel Plate Condenser, Dielectric, Dielectric Strength, Effect of dielectric on capacitance of capacitor. Capacitors in series and in parallel: Derivation of the equivalent capacitance for the above cases. Energy stored in a Condenser, Effect of dielectric on Energy of Condenser, Types of capacitors, their uses.

XXII- CURRENT ELECTRICITY: Electric current – Flow of Electric charges in a metallic conductor, Drift velocity and mobility, Relation between electric current and drift velocity. Ohm’s Law: Statement, Ohmic and Non-Ohmic elements with examples, Conductance, Specific resistance, Variation of resistivity with temperature, Variation of Resistance with temperature, Thermistor. E.M.F. Of Cell – Internal resistance and back E.M.F., Difference between EMF of a Cell and potential difference. Electrical energy, Power definition of kWh. Kirchhoff’s laws: Statement of Kirchhoff’s voltage law, Kirchhoff’s current law, their application to Wheatstone bridge, condition for balancing, Meter bridge, Determination of resistance of a conductor using meter bridge. Principle of Potentiometer determination of internal resistance and E.M.F. Of a cell using potentiometer. Series and parallel combination of cells – Derivation of equivalent EMF for the above cases.

XXIII- THERMOELECTRICITY: Introduction- Seebeck effect, Peltier and Thomson effects and their coefficients. Variation of themo EMF with temperature, Neutral and Inversion Temperatures. Applications of Thermo- Couple.

XXIV- ELECTROMAGNETICS: Oersted’s Experiment, Biot – Savart Law, Ampere’s Law, Magnetic field near a long straight wire and magnetic field at the Center of a circular coil carrying current (with derivations). Field on the axis of circular coil carrying current (expression only). Tangent Galvanometer (TG), Principle and working, Definition of Reduction Factor. Force on a moving charge in a magnetic field, Force on a current carrying conductor placed in a magnetic field, Force between two long straight parallel conductors carrying current, Definition of Ampere, Fleming’s Left Hand Rule, Current loop as a magnetic dipole, force and Torque on Current loop in an uniform magnetic field, magnetic dipole moment of a revolving electron. Principle, Construction and working of Moving Coil Galvanometer (MCG), Converting MCG into ammeter and voltmeter, comparison of MCG with TG. Electromagnetic induction, Magnetic Flux, Induced EMF, Faraday’s and Lenz’s Laws. Fleming’s Right Hand Rule, Self Inductance, Mutual Inductance, Principle of Transformer.
Growth & decay of current in L-R circuit with DC source, Growth and decay of charge in R.C. Circuit connected to DC source, Equations for charge on condenser – Current in inductor, Time constant, Definition and its significance. Alternating current (A.C), Introduction – Instantaneous, maximum and RMS value of A.C. Current, Alternating Voltage applied to a pure resistor, pure inductor, pure capacitor, AC through C-R, L-R and L-C-R series circuits.

XXV ATOMIC PHYSICS: Discovery of electron, e/m of electron by Thomson’s method, Charge of the electron by Millikan’s Oil Drop Method (Principle Only). Photo Electric Effect : Definition, Laws of Photoelectric Emission, Einstein’s explanation of Photoelectric effect, Einstein’s Photo electric equation and its experimental verification by Milikan’s method. Photo Electric Cells, working and uses. X- Rays- Production of X- Rays, Coolidge tube, X- ray spectrum, Continuous X- Ray Spectra, Characteristic X – Ray Spectra, Moseley’s Law and its importance. Compton effect (Statement only), Dual nature of matter, de Broglie’s hypothesis (concept only).

XXVI NUCLEAR PHYSICS: Composition and size of nucleus, mass deffect and binding energy and their relation (Explanation with examples). Natural radio activity – alpha, beta and gamma radiations and their properties, radio active decay law, half life and average life of a radio active substance, Nuclear forces – Their Properties, Artificial Transmutation of elements, Discovery of Neutron, Radio Isotopes and their uses. Nuclear Fission, Chain Reaction, Principle and Working of a Nuclear Reactor, Nuclear Radiation Hazards, Protective shielding, Types of reactors – Breeder Reactor, Power Reactor and their uses. Nuclear Fusion, Energy of Sun and stars, Carbon – Nitrogen cycle and proton – proton cycle, Elementary particles.

XXVII SEMI-CONDUCTOR DEVICES: IIntroduction- Intrinsic and extrinsic semi conductors (n and p type). Junction diode, p -n junction, depletion layer and barrier potential, Forward and Reverse bias, and Current -voltage characteristics of junction diode, p –n Diode as half wave and full wave rectifier (only qualitative treatment), Zener Diode as a voltage regulator.Transistor Function of Emitter, Base and Collector, p-n-p and n-p-n Transistors, Biasing of Transistors, Current –Voltage Characteristics of Transistor in CE configuration, Transistor as common emitter amplifier (qualitative treatment), Logic Gates -OR, AND , NOT, NOR, NAND

XXVIII COMMUNICATION SYSTEMS: Elements of communication systems (block diagram only), Bandwidth of signals (Speech, TV and digital data), bandwidth of Transmission medium. Popagation of electromagnetic waves in the atmosphere, sky and space wave propagation, Modulation, Need for modulation.

I. ATOMIC STRUCTURE: Characteristics of electron, proton and neutron. Rutherford model of an atom. Nature of electromagnetic radiation. Planck’s quantum theory. Explanation of photo electric effect. Dual behavior of electromagnetic radiation. Features of atomic spectra – Emission and absorption spectra. Characteristics of hydrogen spectrum. Bohr’s theory of the structure of atom – Postulates. Bohr’s theory of hydrogen atom,Energy of an electron.
Bohr’s explanation of spectral lines. Failure of Bohr’s theory. Wave-particle nature of electron. De Broglie’s hypothesis, Heisenberg’s uncertainty principle. Important features of the quantum mechanical model of an atom – Meaning and significance of wave function. Quantum numbers, concept of orbitals, definition of atomic orbital in terms of quantum numbers - shapes of s, p and d orbitals, Aufbau principle, Pauli’s exclusion principle and Hund’s rule of maximum multiplicity. Electronic configuration of atoms. Explanation of stability of half filled and completely filled orbitals.

II. CLASSIFICATION OF ELEMENTS AND PERIODICITY IN PROPERTIES: Concept of grouping the elements in accordance to their properties – Mendeleef’s Periodic Table. Periodic law – Mendeleef’s classification of elements. Significance of atomic number and electronic configuration as the basis for periodic classification. Classification of elements into s, p, d, f blocks and their main characteristics. Periodic trends in physical and chemical properties of elements: Atomic radii, Ionic radii, Inert gas radii, Ionization energy, Electron gain energy, Electronegativity and Valency. Variation of oxidation states, Electropositivity – Metallic and Non-metallic nature, Nature of Oxides, Diagonal relationship. Variation of atomic radii in inner transition elements.

III. CHEMICAL BONDING AND MOLECULAR STRUCTURE: Kossel -Lewis approach to chemical bonding. Factors favorable for the formation of ionic bond, energy changes in ionic bond formation. Crystal lattice energy - calculation of lattice energy – Born – Haber cycle. Crystal structure of sodium chloride and Caesium chloride, Coordination number. Properties of ionic compounds. Covalent bond - VSEPR theory – Lewis representation of covalent compounds, Formal charge, geometry of simple molecules. The valence bond approach for the formation of covalent bonds. Directional properties of covalent bond. Properties of covalent bond. Hybridization - different types of hybridization involving s, p and d orbitals. Shapes of simple covalent molecules. Definition of coordinate covalent bond with examples. Molecular orbital theory of homonuclear diatomic molecules. Symmetry and energy of sigma and pi bonding and antibonding molecular orbitals. Molecular orbital energy diagram of H2, N2 and O2. Concept of hydrogen bond and its types with examples. Effect of hydrogen bonding on properties of compounds.

IV. STOICHIOMETRY: Laws of chemical combination – Principles and examples. Molar mass, concept of equivalent weight with examples. Percentage composition of compounds and calculation of empirical and molecular formulae of compounds. Chemical reactions and Stoichiometric equations. Oxidation number concept. Balancing of redox reactions by ion electron method and oxidation number method. Types of redox reactions. Applications
Of redox reactions in titrimetric quantitative analysis. Redox reactions and electrode processes.

V. STATES OF MATTER : GASES AND LIQUIDS : Graham’s law of diffusion, Dalton’s law of partial pressures, Avogadro’s law. Ideal behavior, empirical derivation of gas equation, ideal gas equation. Kinetic molecular theory of gases. Kinetic gas equation (No derivation) - deduction of gas laws. Distribution of molecular velocities and types of molecular velocities – Average, Root Mean Square and Most Probable Velocity. Behavior of real gases, deviation from ideal behaviour, compressibility factor versus pressure diagrams of real gases. Conditions for liquification of gases,
Critical temperature. Liquid state – Properties of liquids in terms of intermolecular attractions. Vapour pressure, viscosity and surface tension (qualitative idea only, no mathematical derivation)

VI. SOLUTIONS: Classification of solutions, molarity, normality, molality and mole fraction. Dilute solutions, vapor pressure, Raoult’s law, Limitations of Raoult’s law. Colligative properties – (i) Relative lowering of vapor pressure (ii) Elevation of B.P (iii) Depression in freezing point and their relation to molar mass. Osmosis and osmotic pressure - theory of dilute solutions. Determination of molar mass using colligative properties: Ostwald’s dynamic method, Cottrell’s method, Rast’s method and Berkeley Hartley’s method. Abnormal molecular mass.

VII. ELECTRO CHEMISTRY: Conductance in electrolytic solutions. Specific, Equivalent and Molar conductance - variation of conductance with concentration, Kohlrausch’s law and its application to calculation of equivalent conductance of weak electrolytes. Electrolytes and non-electrolytes, redox reactions. Electrolysis. Some typical examples of electrolysis viz; Fused Sodium hydroxide, Fused sodium chloride, Brine solution, Fused Magnesium chloride. Faraday’s laws of electrolysis and applications. Galvanic and voltaic cells. Representation and notation of electrochemical cells with and without salt bridge. Standard hydrogen electrode, electrode potentials, electrochemical series. EMF of the cell, Nernst equation and its application to calculate EMF of electrochemical cells. Primary cell - dry cell / Lechlanche cell. Secondary cells - Fuel cells: Hydrogen - Oxygen fuel cell and Hydrocarbon - Oxygen fuel cell. Corrosion: Mechanism, factors to promote corrosion and prevention of corrosion, passivity. Lead accumulator.

VIII. SOLID STATE: Classification of solids based on different binding forces as molecular, ionic, covalent, and metallic solids. Elementary treatment of metallic bond. Metallic solids, amorphous and crystalline solids. Unit cell in two dimensional and three dimensional lattices. Seven crystal systems, Bravais lattices. Bragg’s equation, X-ray study of crystal structure, Bragg’s method. Calculation of density of unit cell, packing in solids, voids, number of atoms per cubic unit cell. Point defects - Schottky and Frenkel defects. Electrical and magnetic properties.

IX. CHEMICAL KINETICS: Concepts of reaction rate, factors affecting reaction rates. Rate law, Units of rate constant. Order and molecularity. Methods of determination of order of a reaction. Integrated rate equations and half lives for zero and first order reaction Collision theory of reaction rates (elementary ideas). Concept of activation energy. Equilibrium: Equilibrium in physical and chemical processes, dynamic nature of equilibrium, Law of mass action, equilibrium constant. Factors affecting equilibrium. Relation between Kp and Kc Le Chatelier’s principle, application to industrial synthesis of (i) Ammonia (ii) Sulphur trioxide. Acids and Bases: Lowry-Bronsted acid base theory. Lewis theory, limitation of Lewis theory, Ionic equilibrium. Ionization of acids and bases, strong and weak electrolytes, degree of ionization. Ionic product of water. Concept of pH. Hydrolysis of salts (elementary idea), hydrolysis constant, buffer solutions. Solubility product and common ion effect with illustrative examples.

X. THERMODYNAMICS: Concept of system, types of systems, surroundings, work, heat, energy, extensive and intensive properties, state functions. First law of thermodynamics - Internal energy and Enthalpy. Heat capacity and Specific heat, Exothermic and Endothermic reactions, measurement of Enthalpy of bond dissociation, combustion, neutralization, formation, atomization, sublimation, phase transition, ionization and dilution. Thermo chemical equations.
Hess’s law of constant heat summation. Driving force for a spontaneous process. Thermodynamic representation of criteria of spontaneity in terms of entropy, entropy as a state function.Gibbs free energy, Gibbs free energy change for spontaneous, non-spontaneous and equilibrium processes.

XI. SURFACE CHEMISTRY: Adsorption: Physical and chemical adsorption, adsorption of gases on solids, factors affecting it - pressure (Langmuir and Freundlich Isotherms) and temperature. Catalysis - types of catalysis, autocatalysis Colloidal state: Colloidal solutions, classification of colloidal solutions, protective colloids and Gold number, Properties of colloids - Tyndall effect, Brownian movement. Coagulation. Emulsions, classification of emulsions, micelles, cleansing action of soap.

XII. HYDROGEN AND ITS COMPOUNDS: Position of hydrogen in periodic table. Occurrence, isotopes of hydrogen. Hydrogen - Preparation, properties and uses including as a fuel. Reactions of hydrogen leading to ionic, molecular and non - stoichiometric hydrides. Physical and Chemical properties of water and heavy water. Hardness of water and its removal Hydrogen peroxide – methods of preparation, physical and chemical properties - oxidation, reduction, decomposition, disproportionation and addition reactions. Detection, structure and uses of Hydrogen Peroxide.

XIII. ALKALI AND ALKALINE EARTH METALS: Electronic configuration, occurrence, Anomalous properties of the first element in each group. Diagonal relationship. Trends in properties like ionization enthalpy, atomic and ionic radii, reactivity with oxygen, hydrogen, halogens and water, uses of alkali and alkaline earth metals. Preparation, properties and uses of sodium hydroxide, salts of oxo acids, sodium carbonate, sodium hydrogen carbonate and sodium chloride. Preparation and uses of Calcium oxide, Calcium carbonate and Calcium sulphate. Biological importance of Na, K, Mg and Ca.

XIV. P-BLOCK ELEMENTS: GROUP 13 ELEMENTS: (IIIA GROUP ELEMENTS): Electronic configuration, occurrence. Variation of properties and oxidation states, trends in chemical reactivity. Anomalous properties of first element of the group. Boron- Physical and chemical properties and uses of boron. Borax, boric
Acid and boron hydrides. Preparation, structure and properties of diborane. Aluminum: Uses, reactions with acids and alkalis. Potash alum.

XV. P-BLOCK ELEMENTS: GROUP 14 ELEMENTS: (IVA GROUP ELEMENTS): Electronic configuration, occurrence. Variation of properties and oxidation states, trends in chemical reactivity. Anomalous behavior of first element. Carbon - catenation, allotropic forms, physical and chemical properties and uses. Similarities between carbon and silicon, uses of oxides of carbon. Important compounds of Silicon - Silicon dioxide, Silicon tetrachloride, silicones, silicates and zeolites. Manufacture and uses of Producer gas and Water gas.

XVI. P- BLOCK ELEMENTS: GROUP 15 ELEMENTS (VA GROUP ELEMENTS): Occurrence - physical states of nitrogen and phosphorous, allotropy, catenation electronic configuration, oxidation states. General characteristics and structure of hydrides. General characteristics of oxides and halides. Oxoacids of nitrogen and phosphorous. Preparation and uses of nitric acid and Ammonia. Super phosphate of lime.

XVII. P- BLOCK ELEMENTS: GROUP 16 ELEMENTS (VIA GROUP ELEMENTS): Occurrence, electronic configuration, oxidation states, physical states of oxygen and sulphur, their structure and allotropy. General characteristics of hydrides, oxides and halides. Structural aspects of oxy acids of chalcogens. Preparation, properties and uses of Ozone and sodium thiosulphate. Industrial process for manufacture of sulphuric acid.

XVIII. P- BLOCK ELEMENTS: GROUP 17 ELEMENTS (VIIA GROUP ELEMENTS): Occurrence, electronic configuration and oxidation states. Physical states of halogens. Ionization Potential, Electro negativity, Electron affinity, bond energies, chemical reactivity, oxidizing power of fluorine and chlorine. Structural aspects of oxy acids of chlorine. Preparation, properties and uses of fluorine, chlorine and bleaching powder. Structures of Inter halogen compounds.

XIX. GROUP 18 ELEMENTS: (ZERO GROUP ELEMENTS): Electronic configuration, occurrence and isolation. Trends in physical and chemical properties and uses. Structures of Xenon oxides and halides.

XX TRANSITION ELEMENTS: General introduction, electronic configuration, occurrence and characteristics of transition metals. General trends in properties of first row transition elements - metallic character, ionization energy, variable oxidation states, atomic and ionic radii, color, catalytic property, magnetic property, interstitial compounds and alloy formation. Lanthanides: Electronic configuration, variable oxidation states, chemical reactivity and lanthanide contraction.
Coordination compounds: Introduction, ligands, coordination number, Werner’s theory of coordination compounds, shapes of coordination compounds - Valence bond theory, IUPAC nomenclature of mono molecular coordination compounds, bonding, isomerism, EAN rule, importance of coordination compounds in qualitative analysis, extraction of metals and biological systems (chromo proteins, haemoglobin, chlorophyll: Structures only).

XXI. GENERAL PRINCIPLES OF METALLURGY: Principles and methods of extraction - concentration, reduction by chemical and Electrolytic methods and refining. Occurrence and principles of extraction of Copper, Zinc, Iron and Silver. Molten electrolysis processes of Aluminium, Magnesium and Sodium.

XXII. ENVIRONMENTAL CHEMISTRY: Definition of terms, types of Pollution, Air, Water and Soil pollution. Oxides of carbon, carbon monoxide, oxides of nitrogen and sulphur, chloro fluoro carbons. Chemical reactions in atmosphere, smogs, major atmospheric pollutants, acid rain. Ozone and its reactions, effects of depletion of ozone layer. Green house effect and global warming. Pollution due to industrial wastes. Green chemistry as an alternative tool for reducing pollution with two examples.

XXIII. BASIC PRINCIPLES AND TECHNIQUES IN ORGANIC CHEMISTRY: Methods of purification, qualitative and quantitative analysis of organic compounds. Classification and IUPAC nomenclature of organic compounds. Homolytic and heterolytic fission of covalent bond. Types of regents – electrophiles, nucleophiles and free radicals with examples. Reactive intermediates. Types of organic reactions - substitution, addition, elimination and rearrangement reactions with
Examples. Inductive effect, electromeric effect, resonance and hyperconjugation.

XXIV. HYDROCARBONS: Classification of hydrocarbons. Alkanes - Nomenclature, isomerism. Methods of preparation of ethane. Conformations of ethane. Physical properties, chemical reactions including free radical mechanism of halogenation, Combustion and Pyrolysis of ethane. Cycloalkanes : Preparation and properties of cyclohexane. Alkenes - Nomenclature, structure of ethene, geometrical isomerism and physical properties of geometrical isomers. Ethylene:
Methods of preparation, physical properties and chemical reactions - addition of hydrogen, halogen, water, hydrogen halides (Markovnikov’s addition and peroxide effect), Ozonolysis and oxidation. Mechanism of electrophilic addition.

XXV. ALKYNES & AROMATIC HYDROCARBONS: Nomenclature, structure of triple bond. Acetylene - Methods of preparation, Physical properties and chemical reactions: Acidic character of acetylene, addition reaction of - hydrogen, halogens, hydrogen halides and water. Aromatic hydrocarbons: Introduction, IUPAC nomenclature; Benzene: Resonance and aromaticity, Chemical properties: Mechanism of electrophilic substitution - Nitration, Sulphonation, Halogenation,
Friedel Craft’s alkylation and Acylation. Directive influence of functional group in mono substituted benzene. Carcinogenicity and toxicity of aromatic compounds.

IX. CHEMICAL KINETICS: Concepts of reaction rate, factors affecting reaction rates. Rate law, Units of rate constant. Order and molecularity. Methods of determination of order of a reaction. Integrated rate equations and half lives for zero and first order reaction Collision theory of reaction rates (elementary ideas). Concept of activation energy. Equilibrium: Equilibrium in physical and chemical processes, dynamic nature of equilibrium, Law of mass action, equilibrium constant. Factors affecting equilibrium. Relation between Kp and Kc Le Chatelier’s principle, application to industrial synthesis of (i) Ammonia (ii) Sulphur trioxide. Acids and Bases: Lowry-Bronsted acid base theory. Lewis theory, limitation of Lewis theory, Ionic equilibrium. Ionization of acids and bases, strong and weak electrolytes, degree of ionization. Ionic product of water. Concept of pH. Hydrolysis of salts (elementary idea), hydrolysis constant, buffer solutions. Solubility product and common ion effect with illustrative examples.

X. THERMODYNAMICS: Concept of system, types of systems, surroundings, work, heat, energy, extensive and intensive properties, state functions. First law of thermodynamics - Internal energy and Enthalpy. Heat capacity and Specific heat, Exothermic and Endothermic reactions, measurement of Enthalpy of bond dissociation, combustion, neutralization, formation, atomization, sublimation, phase transition, ionization and dilution. Thermo chemical equations.
Hess’s law of constant heat summation. Driving force for a spontaneous process. Thermodynamic representation of criteria of spontaneity in terms of entropy, entropy as a state function.Gibbs free energy, Gibbs free energy change for spontaneous, non-spontaneous and equilibrium processes.

XI. SURFACE CHEMISTRY: Adsorption: Physical and chemical adsorption, adsorption of gases on solids, factors affecting it - pressure (Langmuir and Freundlich Isotherms) and temperature. Catalysis - types of catalysis, autocatalysis Colloidal state: Colloidal solutions, classification of colloidal solutions, protective colloids and Gold number, Properties of colloids - Tyndall effect, Brownian movement. Coagulation. Emulsions, classification of emulsions, micelles, cleansing action of soap.

XII. HYDROGEN AND ITS COMPOUNDS: Position of hydrogen in periodic table. Occurrence, isotopes of hydrogen. Hydrogen - Preparation, properties and uses including as a fuel. Reactions of hydrogen leading to ionic, molecular and non - stoichiometric hydrides. Physical and Chemical properties of water and heavy water. Hardness of water and its removal Hydrogen peroxide – methods of preparation, physical and chemical properties - oxidation, reduction, decomposition, disproportionation and addition reactions. Detection, structure and uses of Hydrogen Peroxide.

XIII. ALKALI AND ALKALINE EARTH METALS: Electronic configuration, occurrence, Anomalous properties of the first element in each group. Diagonal relationship. Trends in properties like ionization enthalpy, atomic and ionic radii, reactivity with oxygen, hydrogen, halogens and water, uses of alkali and alkaline earth metals. Preparation, properties and uses of sodium hydroxide, salts of oxo acids, sodium carbonate, sodium hydrogen carbonate and sodium chloride. Preparation and uses of Calcium oxide, Calcium carbonate and Calcium sulphate. Biological importance of Na, K, Mg and Ca.

XIV. P-BLOCK ELEMENTS: GROUP 13 ELEMENTS: (IIIA GROUP ELEMENTS): Electronic configuration, occurrence. Variation of properties and oxidation states, trends in chemical reactivity. Anomalous properties of first element of the group. Boron- Physical and chemical properties and uses of boron. Borax, boric acid and boron hydrides. Preparation, structure and properties of diborane. Aluminum: Uses, reactions with acids and alkalis. Potash alum.

XV. P-BLOCK ELEMENTS: GROUP 14 ELEMENTS: (IVA GROUP ELEMENTS): Electronic configuration, occurrence. Variation of properties and oxidation states, trends in chemical reactivity. Anomalous behavior of first element. Carbon - catenation, allotropic forms, physical and chemical properties and uses. Similarities between carbon and silicon, uses of oxides of carbon. Important compounds of Silicon - Silicon dioxide, Silicon tetrachloride, silicones, silicates and
Zeolites. Manufacture and uses of Producer gas and Water gas.

XVI. P- BLOCK ELEMENTS: GROUP 15 ELEMENTS (VA GROUP ELEMENTS): Occurrence - physical states of nitrogen and phosphorous, allotropy, catenation electronic configuration, oxidation states. General characteristics and structure of hydrides. General characteristics of oxides and halides. Oxoacids of nitrogen and phosphorous. Preparation and uses of nitric acid and Ammonia. Super phosphate of lime.

XVII. P- BLOCK ELEMENTS: GROUP 16 ELEMENTS (VIA GROUP ELEMENTS): Occurrence, electronic configuration, oxidation states, physical states of oxygen and sulphur, their structure and allotropy. General characteristics of hydrides, oxides and halides. Structural aspects of oxy acids of chalcogens. Preparation, properties and uses of Ozone and sodium thiosulphate. Industrial process for manufacture of sulphuric acid.

XVIII. P- BLOCK ELEMENTS: GROUP 17 ELEMENTS (VIIA GROUP ELEMENTS): Occurrence, electronic configuration and oxidation states. Physical states of halogens. Ionization Potential, Electro negativity, Electron affinity, bond energies, chemical reactivity, oxidizing power of fluorine and chlorine. Structural aspects of oxy acids of chlorine. Preparation, properties and uses of fluorine, chlorine and bleaching powder. Structures of Inter halogen compounds.

XIX. GROUP 18 ELEMENTS: (ZERO GROUP ELEMENTS): Electronic configuration, occurrence and isolation. Trends in physical and chemical properties and uses. Structures of Xenon oxides and halides.

XX TRANSITION ELEMENTS: General introduction, electronic configuration, occurrence and characteristics of transition metals. General trends in properties of first row transition elements - metallic character, ionization energy, variable oxidation states, atomic and ionic radii, color, catalytic property, magnetic property, interstitial compounds and alloy formation. Lanthanides: Electronic configuration, variable oxidation states, chemical reactivity and lanthanide contraction.
Coordination compounds: Introduction, ligands, coordination number, Werner’s theory of coordination compounds, shapes of coordination compounds - Valence bond theory, IUPAC nomenclature of mono molecular coordination compounds, bonding, isomerism, EAN rule, importance of coordination compounds in qualitative analysis, extraction of metals and biological systems (chromo proteins, haemoglobin, chlorophyll: Structures only).

XXI. GENERAL PRINCIPLES OF METALLURGY: Principles and methods of extraction - concentration, reduction by chemical and Electrolytic methods and refining. Occurrence and principles of extraction of Copper, Zinc, Iron and Silver. Molten electrolysis processes of Aluminium, Magnesium and Sodium.

XXII. ENVIRONMENTAL CHEMISTRY: Definition of terms, types of Pollution, Air, Water and Soil pollution. Oxides of carbon, carbon monoxide, oxides of nitrogen and sulphur, chloro fluoro carbons. Chemical reactions in atmosphere, smogs, major atmospheric pollutants, acid rain. Ozone and its reactions, effects of depletion of ozone layer. Green house effect and global warming. Pollution due to industrial wastes. Green chemistry as an alternative tool for reducing pollution with two examples.

XXIII. BASIC PRINCIPLES AND TECHNIQUES IN ORGANIC CHEMISTRY: Methods of purification, qualitative and quantitative analysis of organic compounds. Classification and IUPAC nomenclature of organic compounds. Homolytic and heterolytic fission of covalent bond. Types of regents – electrophiles, nucleophiles and free radicals with examples. Reactive intermediates. Types of organic reactions - substitution, addition, elimination and rearrangement reactions with
Examples. Inductive effect, electromeric effect, resonance and hyperconjugation.

XXIV. HYDROCARBONS: Classification of hydrocarbons. Alkanes - Nomenclature, isomerism. Methods of preparation of ethane. Conformations of ethane. Physical properties, chemical reactions including free radical mechanism of halogenation, Combustion and Pyrolysis of ethane. Cycloalkanes : Preparation and properties of cyclohexane. Alkenes - Nomenclature, structure of ethene, geometrical isomerism and physical properties of geometrical isomers. Ethylene:
Methods of preparation, physical properties and chemical reactions - addition of hydrogen, halogen, water, hydrogen halides (Markovnikov’s addition and peroxide effect), Ozonolysis and oxidation. Mechanism of electrophilic addition.

XXV. ALKYNES & AROMATIC HYDROCARBONS: Nomenclature, structure of triple bond. Acetylene - Methods of preparation, Physical properties and chemical reactions: Acidic character of acetylene, addition reaction of - hydrogen, halogens, hydrogen halides and water. Aromatic hydrocarbons: Introduction, IUPAC nomenclature; Benzene: Resonance and aromaticity, Chemical properties: Mechanism of electrophilic substitution - Nitration, Sulphonation, Halogenation,
Friedel Craft’s alkylation and Acylation. Directive influence of functional group in mono substituted benzene. Carcinogenicity and toxicity of aromatic compounds.

EAMCET 2012 Notification

| comments (1)

A Common Entrance Test designated as Engineering, Agricultural Common Entrance Test- 2012 (EAMCET 2012) of Andhra Pradesh will be conducted by Jawaharlal Nehru Technological University Hyderabad for entry Into the first year of the following professional courses offered for the academic year 2012-2013 in the State of Andhra Pradesh.

EAMCET 2012 Exam Pattern

| comments (1)

The candidates who have secured qualifying marks in EAMCET 2012 and candidates belonging to the category of Scheduled Caste and Schedule Tribe, for whom qualifying marks have not been prescribed, shall be assigned ranking in the order of merit on the basis of combined score obtained by giving 75% weightage to the marks secured in EAMCET 2012 and 25% weightage to the marks secured in the relevant group subjects namely Mathematics, Physics, Chemistry of the qualifying examination.
For the preparation of merit list, in case of more than one student securing the same combined score obtained as mentioned above, the tie shall be resolved to decide the relative ranking by successively considering the following
i) The total marks secured in  EAMCET 2012
ii) The Marks secured in mathematics in 
EAMCET 2012
iii) The marks secured in Physics in  EAMCET 2012
iv) The Percentage of Aggregate marks secured in the qualifying examination
v) If the tie still persists the date of birth of the concerned candidates, the older being given preference over the younger.
The weightage of marks in the case of candidates belonging to the category of Persons of Indian Origin (PIO) / Overseas Citizen of India (OCI) Card Holders, will be decided by a committee constituted by the competent authority.

EAMCET 2012 Eligibility Criteria

| comments (2)

1. A pass in the intermediate Examination or appearance at 2nd year Intermediate Examination (10+ 2 pattern) conducted by the A.P. Board of Intermediate Education (BIE), with appropriate optional subjects or its equivalent thereto recognized by BIE. AP.

2. A pass at Diploma examination or appearance at the final year Diploma Examination in Engineering conducted by the State Board of Technical Education and Training, AP, or its equivalent thereto. Diploma candidates are eligible to apply for B.E/B,Tech course. 
  • In case of such students who appear for the entrance Test. pending result of their qualifying examination. Their entry shall be subject to their securing a pass in the said qualifying examination.
  • Candidates should be of Indian nationality or Parsons of Indian Origin (PIO) / Overseas Citizen of India (OCI) Card Holders.
  • Candidates should belong to the State of Andhra Pradesh as defined in the AP. Educational Institutions (regulations for admission) order 1974 and its amendments (vide G.O.P.No. 646 dt: 10-7-79 of Education (W) Department).

EAMCET 2012 Important Dates

| comments (1)

Date of Entrance Test  EAMCET 2012 First week of May 2012
Data of commencement of Sale and receipt of applications forms:
First week of February 2012
Last date for sale of applications (At all the Head Post offices. centers. designated Andhra Banks) First week of April 2012

EAMCET 2012

| comments (1)

Welcome to our EAMCET Entrance Exam 2012 section. At sarkariexam you can get every sort of information regarding Entrance Exam in EAMCET in 2012 with much of ease and comfort.
EAMCET or engineering, medical and architecture common entrance test is a test conducted in the state of Andhra Pradesh for admissions into these three courses in different government and private colleges and universities of the state. Usually the exam of EAMCET is conducted during the month of May, and is an opportunity for the students to get into the colleges and subjects of their choice. In Andhra Pradesh, there are many colleges related to medical, engineering as well as architecture under many universities.
A Common Entrance Test, designated as Engineering, Agricultural and Medical Common Entrance Test (EAMCET ) of Andhra Pradesh will be conducted (as per G.O.Ms.No. 16 Edn.,(EC) Department Dt:25/2/2004 and its amendments) by Jawaharlal Nehru Technological University Hyderabad for entry into the first year of the following professional courses offered in the State of Andhra Pradesh.
a) B.E/B.Tech courses
b) B.V.Sc and A.H/B.Sc(Ag)/B.Sc (Hort)/B.F.Sc/B.Tech
(FS&T)/B.Sc (CA&BM) courses
c) MBBS/BDS/BAMS/BHMS/BNYS courses
d) B. Pharm/B.Tech (Bio-technology) and Pharm-D (Doctor of
Pharmacy) courses
EAMCET 2012 will be held on around May 30
Qualification
A pass in the Intermediate Examination or appearance at 2nd year Intermediate Examination (10 + 2 pattern) conducted by the A.P. Board of Intermediate Education (BIE), with appropriate optional subjects or its equivalent thereto recognized by BIE, AP.
A pass at Diploma examination or appearance at the final year Diploma Examination in Engineering conducted by the State Board of Technical Education and Training, A.P. or its equivalent thereto. Diploma candidates are eligible to apply for B.E/B.Tech./ B.Pharm courses only. Diploma in pharmacy are eligible to apply for Pharm-D course.
In case of such students who appear for the entrance Test, pending result of their qualifying examination, their entry shall be subject to their securing a pass in the said qualifying examination
Candidates can also get latest information regarding EAMCET Entrance Exam 2012 Notifications directly into their Mail Box by Subscribing to our Job Updates by Email service.
We keep updating all the latest EAMCET Entrance Exam details here so please Bookmark this page using Control+D and don`t miss any Entrance Exam details from EAMCET.
We wish you all the best for your career through the upcoming Entrance Exam 2012!!
 
Support : Creating Website | Johny Template | Mas Template
Copyright © 2011. The Complete Educational and Jobs Portal - All Rights Reserved
Template Created by Creating Website Published by Mas Template
Proudly powered by Premium Blogger Template